Worksheet 2

Name: SOL'NJ

Score:

Consider two bases, \mathcal{B} and \mathcal{C} for \mathbb{R}^2 or \mathbb{R}^3 and a vector $[\vec{x}]_{\mathcal{B}}$ in \mathcal{B} coordinates. Find the change of basis matrix $\underset{\mathcal{C}\leftarrow\mathcal{B}}{P}$ and rewrite the vector in \mathcal{C} coordinates.

$$C = \left\{ \begin{bmatrix} -2 \\ -2 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \end{bmatrix} \right\} \qquad B = \left\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} -8 \\ -12 \end{bmatrix} \right\}$$

$$\mathcal{B} = \left\{ \begin{bmatrix} 4 \\ -9 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \end{bmatrix} \right\}$$

$$\left[\vec{x}\right]_{\mathcal{B}} = \begin{bmatrix} -17\\20 \end{bmatrix}$$

$$\mathcal{C} = \left\{ \begin{bmatrix} 0 \\ -3 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\} \qquad \mathcal{B} = \left\{ \begin{bmatrix} 4 \\ -9 \end{bmatrix}, \begin{bmatrix} -1 \\ 6 \end{bmatrix} \right\}$$

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} -17 \\ 20 \end{bmatrix} \qquad \mathcal{P} = \begin{bmatrix} 3 & -2 \\ -4 & 1 \end{bmatrix}$$

$$\begin{bmatrix} -2 & 3 & 3 & -8 \\ 0 & 3 & -8 \\ 0 & 2 & 2 \end{bmatrix} \qquad \mathcal{B} = \left\{ \begin{bmatrix} 16 \\ -3 \end{bmatrix}, \begin{bmatrix} -16 \\ 3 \end{bmatrix} \right\}$$

$$\left\{ \begin{bmatrix} 4\\0 \end{bmatrix}, \begin{bmatrix} -12\\3 \end{bmatrix} \right\} \qquad \mathcal{B} = \left\{ \begin{bmatrix} 16\\-3 \end{bmatrix}, \begin{bmatrix} -16\\3 \end{bmatrix} \right\}$$

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} -23 \\ 14 \end{bmatrix}$$
 $P = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$

$$\mathcal{B} = \left\{ \begin{bmatrix} -2 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix} \right\} \qquad \mathcal{B} = \left\{ \begin{bmatrix} -6 \\ 9 \end{bmatrix}, \begin{bmatrix} 4 \\ -9 \end{bmatrix} \right\}$$

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} -13 \\ 11 \end{bmatrix} \qquad \mathcal{P} = \begin{bmatrix} 3 & -2 \\ 3 & 1 \end{bmatrix}$$

$$\left\{ \begin{bmatrix} -2\\4 \end{bmatrix}, \begin{bmatrix} 0\\-1 \end{bmatrix} \right\} \qquad \qquad \mathcal{B} = \left\{ \begin{bmatrix} -6\\9 \end{bmatrix}, \begin{bmatrix} 4\\-9 \end{bmatrix} \right\}$$

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} -13\\11 \end{bmatrix} \qquad P = \begin{bmatrix} 3 & -2\\3 & 1 \end{bmatrix}$$

5.

6. Is it always true that

 $[\vec{x} + \vec{y}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{B}} + [\vec{y}]_{\mathcal{B}}?$ $[\vec{x} + \vec{y}]_{\mathcal{B}} = [\vec{x}]_{\mathcal{B}} + [\vec{y}]_{\mathcal{B}}?$

and

That is, is the process of rewriting vectors in a new coordinate system

7. Find the change of basis matrix from \mathcal{B} to \mathcal{C} for two bases for the vector space \mathbb{P}_2 of polynomials of degree up to 2. 2 words to solve: USL #\$ below \$\beta\$ winter each polynomials of \$\mathbb{B}\$ in terms of \$\mathbb{C}\$, or USL \$\mathbb{E} = \beta 1, \text{ X, X}^2 \Bar{3}\$ std basis, $\mathcal{B} = \{x^2 + x + 1, x^2 + 1, x - 1\}$ $\mathcal{C} = \{2x^2 + 3x + 1, 2x^2 + 2x + 1, -x^2 - 2\}$ here with PB Pp.

Use it to write the polynomial

$$p(x) = 1(x^2 + x + 1) + 2(x^2 + 1) + 3(x - 1)$$

in the new basis C.

Pe X = [x]e. PB = [6, 62 - 6n], so

8. What are the columns of the matrix $P_c \in \mathcal{B}$? Hint: think of the matrix as the composite $P_c \cap P_c \cap P_c$. What are the columns of $P_c \cap P_c$? What happens when you apply $P_c \cap P_c$ to them?

9. Suppose I want to convert from a basis $\mathcal A$ to a basis $\mathcal C$ and I already know the matrices

[b2] p. [b3] p

 $\begin{array}{ccc}
P & P \\
C \leftarrow \mathcal{B} & \mathcal{B} \leftarrow \mathcal{A}
\end{array}$

How do I find P? $C \leftarrow A$ $C \leftarrow A$ $C \leftarrow A$ $C \leftarrow A$ $C \leftarrow B$ $C \leftarrow B$ 11 invertible.